
The Wakeup Problem∗

Michael J. Fischer† Shlomo Moran‡ Steven Rudich§ Gadi Taubenfeld¶

December 2 1995

Abstract

We study a new problem, the wakeup problem, that seems to be fundamental in
distributed computing. We present efficient solutions to the problem and show how
these solutions can be used to solve the consensus problem, the leader election prob-
lem, and other related problems. The main question we try to answer is, how much
memory is needed to solve the wakeup problem? We assume a model that captures
important properties of real systems that have been largely ignored by previous work
on cooperative problems.

1 Introduction

1.1 The Wakeup Problem

The wakeup problem is a deceptively simple new problem that seems to be fundamental
in distributed computing. The goal is to design a t-resilient protocol for n asynchronous
processes in a shared memory environment such that at least p processes eventually learn
that at least τ processes have waked up and begun participating in the protocol. Put
another way, the wakeup problem with parameters n, t, τ and p is to find a protocol such
that in any fair run of n processes with at most t failures, at least p processes eventually
know that at least τ processes have taken at least one step in the past. The only kind of
failures we consider are crash failures, in which a process may become faulty at any time
during its execution, and when it fails, it simply stops participating in the protocol.

In the wakeup problem, it is known a priori by all processes that at least n− t processes
will eventually wake up. The goal is simply to have a point in time at which the fact that at
least τ processes have already waked up is known to p processes. It is not required that this
time be the earliest possible, and faulty processes are included in the counts of processes

∗A preliminary version of this work appeared in the Proceedings of the Twenty-Second Annual Symposium
on Theory of Computing (STOC), Baltimore, Maryland, May 1990.

†Computer Science Department, Yale University, New Haven, CT 06520.
‡Computer Science Department, Technion, Haifa 32000, Israel.
§Computer Science Department Carnegie Mellon University, Pittsburgh, PA 15213.
¶AT&T Bell Laboratories and the Open University of Israel.
This work was supported in part by ONR contract N00014-89-J-1980, by the National Science Foun-

dation under grant CCR-8405478, by the Hebrew Technical Institute scholarship, by the Technion V.P.R.
Funds - Wellner Research Fund, and by the Foundation for Research in Electronics, Computers and Com-
munications, administrated by the Israel Academy of Sciences and Humanities.

1

that have waked up and that know about that fact. Note that in a solution to the wakeup
problem, at least p− t correct processes eventually learn that at least τ − t correct processes
are awake and participating in the protocol.

The significance of this problem is two-fold. First, it seems generally useful to have a
protocol such that after a crash of the network or after a malicious attack, the remaining
correct processes can figure out if sufficiently many other processes remain active to carry
out a given task. Second, a solution to this problem is a useful building block for solving
other important problems such as the consensus [Abr88, Fis83, PSL80], leader election
[FL87, Pet82], memory initialization [Hem89], phase synchronization [Mis91], and processor
identity [LP90] problems.

1.2 A New Model

Much work to date on fault-tolerant parallel and distributed systems has been generous
of the class of faults considered but rather strict in the requirements on the system itself.
Problems are usually studied in an underlying model that is fully synchronous, provides
each process with a unique name that is known to all other processes, and is initialized
to a known state at time zero. We argue that none of these assumptions is realistic in
today’s computer networks, and achieving them even within a single parallel computer is
becoming increasingly difficult and costly. Large systems do not run off of a single clock
and hence are not synchronous. Providing processes with unique id’s is costly and difficult
and greatly complicates reconfiguring the system. Finally, simultaneously resetting all of
the computers and communication channels in a large network to a known initial state is
virtually impossible and would rarely be done even if it were possible because of the large
destructive effects it would have on ongoing activities.

Our new model of computation makes none of these assumptions. It consists of a fully
asynchronous collection of n identical anonymous processes that communicate via a single
finite sized shared register which is initially in an arbitrary unknown state. Access to the
shared register is via atomic “read-modify-write” instructions which, in a single indivisible
step, read the value in the register and then write a new value that can depend on the value
just read. (When only atomic read and atomic write instructions are assumed the wakeup
problem can not be solved even when t = 0, τ = 2 and p = 1, since no process can ever
learn that the others are awake if the processes are scheduled in a round robin fashion.)

Assuming an arbitrary unknown initial state relates to the notion of self-stabilizing
systems defined by Dijkstra [Dij74]. However, Dijkstra considers only non-terminating
control problems such as the mutual exclusion problem, whereas we show how to solve
decision problems such as the wakeup, consensus and leader election problems, in which a
process makes an irrevocable decision after a finite number of steps.

Before proceeding, we should address two possible criticisms of shared memory models in
general and our model in particular. First, most computers implement only reads and writes
to memory, so why do we consider atomic read-modify-write instructions? One answer is
that large parallel systems access shared memory through a communication network which
may well possess independent processing power that enables it to implement more powerful
primitives than just simple reads and writes. Indeed, such machines have been seriously
proposed [GGK+84, Pea85]. Another answer is that part of our interest is in exploring the
boundary between what can and cannot be done, and a proof of impossibility for a machine

2

with read-modify-write access to memory shows a fortiori the corresponding impossibility
for the weaker read/write model.

A second possible criticism is that real distributed systems are built around the message-
passing paradigm and that shared memory models are unrealistic for large systems. Again
we have several possible answers. First, the premise may not be correct. Experience is
showing that message-passing systems are difficult to program, so increasing attention is
being paid to implementing shared memory models, either in hardware (e.g. the Fluent
machine [RBJ88]) or in software (e.g. the Linda system [CG89]). Second, message-passing
systems are themselves an abstraction that may not accurately reflect the realities of the un-
derlying hardware. For example, message-passing systems typically assume infinite buffers
for incoming messages, yet nothing is infinite in a real system, and indeed overflow of the
message buffer is one kind of fault to which real systems are subject. It is difficult to see
how to study a kind of fault which is assumed away by the model. Finally, at the lowest
level, communication hardware looks very much like shared memory. For example, a wire
from one process to another can be thought of as a binary shared register which the first
process can write (by injecting a voltage) and the second process can read (by sensing the
voltage).

1.3 Space Complexity Results

The main question we try to answer is, how many values v for the shared register are
necessary and sufficient to solve the wakeup problem? The answer both gives a measure of
the communication-space complexity of the problem and also provides a way of assessing
the cost of achieving reliability. We give a brief overview of our results below.

1.3.1 Fault-Free Solutions

First we examine what can be done in the absence of faults (i.e., t = 0). We present a
solution to the wakeup problem in which one process learns that all other processes are
awake (i.e., p = 1 and τ = n), and it uses a single 4-valued register (i.e., v = 4). The
protocol for achieving this is quite subtle and surprising. It can also be modified to solve
the leader election problem. Based on this protocol, we construct a fault-free protocol that
reaches consensus on one out of k possible values using a 5-valued register. Finally, we show
that there is no fault-free solution to the wakeup problem with only two values (i.e., one
bit) when τ ≥ 3.

1.3.2 Fault-Tolerant Solutions: Upper Bounds

We start by showing that the fault-free solution which uses a single 4-valued register, men-
tioned in the previous section, can actually tolerate t failures for any τ ≤ ((2n − 2)/(2t +
1) + 1)/2. Using many copies of this protocol, we construct a protocol with v = 8t+1 that
tolerates t faults when τ ≤ n − t. Thus, if t is a constant, then a constant sized shared
memory is sufficient, independent of n. However, the constant grows exponentially with t.
An easy protocol exists with v = n that works for any t and τ ≤ n − t. This means that
the above exponential result is only of interest for t ¿ log n. Finally, we show that for any

3

t < n/2, there is a t-resilient solution to the wakeup problem for any τ ≤ bn/2c+ 1, using
a single O(t)-valued register.

1.3.3 Fault-Tolerant Solutions: A Lower Bound

We prove that for any protocol P that solves the wakeup problem for parameters n, t
and τ , where 1 < t ≤ 2n/3 and τ > dn/3e, and for every 0 < ε ≤ 1/2, the number
of shared memory values used by P is at least (W + 1)α, where W = εt2/(2(n− t)) and
α = 1/(log2((n− t)/((1− ε)t) + 2)). The proof is quite intricate and involves showing for
any protocol with too few memory values that there is a run in which n− t processes wake
up and do not fail, yet no process can distinguish that run from another in which fewer
than τ wake up; hence, no process knows that τ are awake.

When we take t to be a constant fraction of n we get the following immediate corollary:
Let P be a protocol that solves the wakeup problem for parameters n, t and τ , where
t ≥ n/c and τ > dn/3e. Let V be the set of shared memory values used by P . Let
γ = 1/(log2(c + 1)) and δ > 0. Then, |V | = Ω(nγ−δ). The corollary gives the bound we
obtain in the case that t = Ω(n). However, when t = O(nξ) for ξ < 1 a constant, one gets
that our lower bound (W + 1)α = O(1) and hence is not interesting.

1.4 Relation to Other Problems

We establish connections between the wakeup problem and two fundamental problems in
distributed computing: the consensus problem and the leader election problem. These
two problems lie at the core of many problems for fault-tolerant distributed applications
[Abr88, AG85, CR79, DDS87, DKR82, DLS88, Fis83, FL87, FLM86, FLP85, HS80, KKM,
KMZ84, Pet82, PKR84, PSL80, TKM89a, Tau91].

We show that: (1) any protocol that uses v values and solves the wakeup problem for
t < n/2, τ > n/2 and p = 1 can be transformed into t-resilient consensus and leader election
protocols which use 8v values; and (2) any t-resilient consensus or leader election protocol
that uses v values can be transformed into a t-resilient protocol which uses 4v values and
solves the wakeup problem for any τ ≤ bn/2c+ 1 and p = 1.

Using the first result above, we can construct efficient solutions to both the consensus and
leader election problems from solutions for the wakeup problem. The second result implies
that the lower bound proved for the wakeup problem holds for these other two problems.
As a consequence, the consensus and the leader election problems are space-equivalent in
our model.

2 Definitions and Notations

2.1 Protocols and Knowledge

An n-process protocol P = (C, N, R) consists of a nonempty set C of runs, an n-tuple
N = (q1, . . . , qn) of process id’s (or processes, for short), and an n-tuple R = (R1, . . . , Rn)
of sets of registers. Informally, Ri includes all the registers that process qi can access. We
assume throughout this paper that n ≥ 2.

4

A run is a pair (f, S) where f is a function which assigns initial values to the registers
in R1 ∪ . . . ∪ Rn and S is a finite or infinite sequence of events. (When S is finite, we
also say that the run is finite.) An event e = (qi, v, r, v′) means that process qi, in one
atomic step, first reads a value v from register r and then writes a value v′ into register r.
We say that the event e involves process qi and register r, and that process qi performs a
read-modify-write operation on register r.

The value of a register at a finite run is the last value that was written into that register,
or its initial value if no process wrote into the register. We use value(r, ρ) to denote the
value of r at a finite run ρ.

A register r is said to be local if there exists an i such that r ∈ Ri and for any j 6= i, r 6∈
Rj . A register is shared if it is not local. In this paper we restrict attention to protocols
which have exactly one register which is shared by all the processes (i.e., |R1∩ . . .∩Rn| = 1)
and all other registers are local. We assume that all local registers of process qi (1 ≤ i ≤ n),
have names of the form r.i . Furthermore, we assume that for any two processes qi and qj ,
the (local) register r.i exists iff the register r.j exists.

If S′ is a prefix of S then the run (f, S′) is a prefix of (f, S), and (f, S) is an extension
of (f, S′). Let 〈S;S′〉 be the sequence obtained by concatenating the sequences S and S′.
For a run ρ = (f, S), let 〈ρ; S′〉 be an abbreviation for (f, 〈S;S′〉). For any sequence S, let
Si be the subsequence of S containing all events in S which involve qi. Runs (f, S) and
(f ′, S′) are equivalent with respect to qi, denoted by (f, S) i∼ (f ′, S′), iff Si = S′i. Let null
denotes the empty sequence.

The set of runs of each protocol considered in this paper is assumed to satisfy the
following five properties.

• ρ is a run iff every prefix of ρ is a run.

• Let ρ and ρ′ be finite runs such that ρ
i∼ ρ′ and value(r, ρ) = value(r, ρ′). Then,

〈ρ; (qi, v, r, v′)〉 is a run iff 〈ρ′; (qi, v, r, v′)〉 is a run. That is, if some event can happen
at a process qi at some point in a run, then the same event can happen at any run
that is equivalent to that run w.r.t qi provided that the register qi access in that event
has the same value in both run.

• Let 〈ρ; (qi, v, r, v′)〉 be a run. Then, v = value(r, ρ). That is, it is possible to read
only the last value that is written into a register.

• Let r be the single shared register. For any run ρ, there exists a run (g, null) where
g(r) = value(r, ρ). That is, nothing can be assumed about the initial values.

• Let π be a permutation of {1, ..., n}, let Sπ be the sequence of events S where for every
1 ≤ i ≤ n every appearance of qi in S is replaced by qπ(i), and let fπ be a function
where fπ(r) = f(r) for the shared register r, and fπ(r.π(i)) = f(r) for any local
register r.i. Then, if (f, S) is a run then (fπ, Sπ) is also a run for every permutation
π. That is, the processes are anonymous and identically programmed.

Notice that the above properties allow nondeterministic processes. However, for conve-
nience, we will assume that processes are deterministic.

5

We are now ready to define the notion of knowledge in a shared memory environment. In
the following, we use predicate to mean a set of runs.

Definition: For a process qi, predicate b and finite run ρ, process qi knows b at ρ iff for all
ρ′ such that ρ

i∼ ρ′, it is the case that ρ′ ∈ b.
We say that a process p learns a predicate b in a run ρ if p knows b in ρ but it does not
know b in any proper prefix of ρ.

For simplicity, we assume that a process always takes a step whenever it is scheduled. A
process that takes infinitely many steps in a run is said to be correct in that run; otherwise
it is faulty. We say that an infinite run is l-fair iff at least l processes are correct in it.

2.2 Wakeup, Consensus and Leader Election Protocols

In this subsection we formally define the notions of t-resilient wakeup, consensus and leader
election protocols (0 ≤ t ≤ n). We say that a process qi is awake in a run if the run contains
an event that involves qi. The predicate “at least τ processes are awake” is the set of all
runs for which there exist τ different processes which are awake in the run. Note that a
process that fails after taking a step is nevertheless considered to be awake in the run.

• A wakeup protocol with parameters n, t, τ and p is a protocol for n processes such
that, for any (n − t)-fair run ρ, there exists a finite prefix of ρ in which at least p
processes know that at least τ processes are awake in ρ.

It is easy to see that a wakeup protocol exists only if max(p, τ) ≤ n−t, and hence, from
now on, we assume that this is always the case. We also assume that min(p, τ) ≥ 1.

In the following, whenever we speak about a solution to the wakeup problem without
mentioning p, we are assuming that p = 1.

• A t-resilient k-consensus protocol is a protocol for n processes, where each process
has a local read-only input register and a local write-once output register. For any
(n− t)-fair run there exists a finite prefix in which all the correct processes decide on
some value from a set of size k (i.e., each correct process writes a decision value into
its local output register), the decision values written by all processes are the same,
and the decision value is equal to the input value of some process.

In the following, whenever we say “consensus” (without mentioning specific k) we
mean “binary consensus”, where the possible decision values are 0 and 1.

• Let P be a protocol for n processes, where each process has a local write-once output
register, and let ρ be a finite run of P . We say that a process qi commits to a value
v ∈ {0, 1} in ρ if qi either has already written or eventually writes v to its output
register in any (n− t)-fair extension of ρ in which qi is correct. A process qi is elected
in ρ if qi knows that it is committed to 1 in ρ. P is said to be a t-resilient leader
election protocol if in any (n − t)-fair run of P , there exists a finite prefix in which
exactly one process is elected and all other processes (correct or faulty) commit to the
value 0. The elected process is called the leader.

Notice, that here we need to use the notions “commits” and “elected” rather than
“decides”, since the elected leader might fail just before it writes to its output register

6

(at which point it knows that it is committed to 1). Also, we observe that because
processes are identical and anonymous, there can not be an a priori leader (if one
process is elected without taking any steps, then all processes do so). Thus, a process
is elected in a run only if it participates in this run - a fact which is used in the sequel.

3 Fault-free Solutions

In this section, we develop the See-Saw protocol, which solves the fault-free wakeup problem
using a single 4-valued shared register. Then we show how the See-Saw protocol can be
used to solve the k-valued consensus problem. Finally, we show that it is impossible to solve
the wakeup problem using only one shared bit.

To understand the See-Saw protocol, the reader should imagine a playground with a
See-Saw in it. The processes will play the protocol on the See-Saw, adhering to strict rules.
When each process enters the playground (wakes up), it sits on the up-side of the See-Saw
causing it to swing to the ground. Only a process on the ground (or down-side) can get off
and when it does the See-Saw must swing to the opposite orientation. These rules enforce
a balance invariant which says that the number of processes on each side of the See-Saw
differs by at most one (the heavier side always being down).

Each process enters the playground with two tokens. The protocol will force the pro-
cesses on the bottom of the See-Saw to give away tokens to the processes on the top of
the See-Saw. Thus, token flow will change direction depending on the orientation of the
See-Saw. Tokens can be neither created nor destroyed. The idea of the protocol is to cause
tokens to concentrate in the hands of a single process. A process seeing 2k tokens knows
that at least k processes are awake. Hence, if it is guaranteed that eventually some process
will see at least 2τ tokens, the protocol is by definition a wakeup protocol with parameter
τ , even if the process does not know the value of τ and hence does not know when the goal
has been achieved.

Following is the complete description of the See-Saw protocol. The 4-valued shared
register is easily interpreted as two bits which we call the “token bit” and the “See-Saw”
bit. The two states of the token bit are called “token present” and “no token present”.
We think of a public token slot which either contains a token or is empty, according to the
value of the token bit. The two states of the See-Saw bit are called “left side down” and
“right side down”. The “See-Saw” bit describes a virtual See-Saw which has a left and a
right side. The bit indicates which side is down (implying that the opposite side is up).

Each process remembers in private memory the number of tokens it currently possesses
and which of four states it is currently in with respect to the See-Saw: “never been on”
“on left side”, “on right side”, and “got off”. A process is said to be on the up-side of the
See-Saw if it is currently “on left side” and the See-Saw bit is in state “right side down”,
or it is currently “on right side” and the See-Saw bit is in state “left side down”. A process
initially possesses two tokens and is in state “never been on”.

We define the protocol by a list of rules. When a process is scheduled, it looks at the
shared register and at its own internal state and carries out the first applicable rule, if any.
If no rule is applicable, it takes a null step which leaves its internal state and the value in
the shared register unchanged.

7

Rule 1: (Start of protocol) Applicable if the scheduled process is in state “never been on”.
The process gets on the up-side of the See-Saw and then flips the See-Saw bit. By
“get on”, we mean that the process changes its state to “on left side” or “on right
side” according to whichever side is up. Since flipping the See-Saw bit causes that
side to go down, the process ends up on the down-side of the See-Saw.

Rule 2: (Emitter) Applicable if the scheduled process is on the down-side of the See-Saw,
has one or more tokens, and the token slot is empty. The process flips the token bit
(to indicate that a token is present) and decrements by one the count of tokens it
possesses. If its token count thereby becomes zero, the process flips the See-Saw bit
and gets off the See-Saw by setting its state to “got off”.

Rule 3: (Absorber) Applicable if the scheduled process is on the up-side of the See-Saw and
a token is present in the token slot. The process flips the token bit (to indicate that
a token is no longer present) and increments by one the count of tokens it possesses.

Note that if a scheduled process is on the down-side, has 2k − 1 tokens, and a token is
present in the token slot, then, although no rule is applicable, the process nevertheless sees
a total of 2k tokens and hence knows that k processes have waked up.

The two main ideas behind the protocol can be stated as invariants.

TOKEN INVARIANT: The number of tokens in the system is either 2n or 2n+1 and does
not change at any time during the protocol. (The number of tokens in the system is the
total number of tokens possessed by all of the processes, plus 1 if a token is present in the
token bit slot.)

Proof: The number of tokens in the starting configuration is 2n with the possible addition
of one token present in the token bit slot. The rules that effect tokens are rules 2 and 3
both of which maintain the token invariant.

BALANCE INVARIANT: The number of processes on the left and right sides of the See-
Saw is either perfectly balanced or favors the down-side of the See-Saw by one process.

Proof: The see-saw starts empty, zero on either side. Rule 1 preserves the invariant because
a process gets on the up side and then flips the see-saw. If a process runs out of tokens,
it must be on the down side of the see-saw; hence, when rule 2 is applied the invariant is
maintained.

Theorem 3.1: Let t = 0. The See-Saw protocol uses a 4-valued shared register and is a
wakeup protocol for n, t, τ (and p = 1), where n and τ are arbitrary and t = 0. (Note that
the rules for the protocol do not mention n or τ .)

Proof: By token invariant, there are no more than 2n + 1 tokens in the system. At most
two come from each player; at most one comes from the initialized state of the token bit.
Hence if a process sees 2τ tokens, it has to be the case that at least τ processes are awake.

Next, we argue that the protocol comes to a state where everybody has awaken and
there is only one process remaining on the see-saw. We know there will be a time when
everybody is awake. Furthermore, for any number of processes m ≥ 2 still active on the

8

see-saw, there will be a future time when there are only m− 1 processes on the see-saw: By
the balance invariant, there are some processes on both sides and hence eventually either
rule 2 or rule 3 are applicable (i.e., there is no deadlock). Each process has awaken up,
hence, rule 1 will no longer apply. Applying rules 2 and 3 will cause tokens to flow from the
down side to the up side; eventually the token count of a down side process will become zero
and the process will get off the See-Saw. Hence eventually there will be only one process
remaining on the see-saw. This process will see 2n tokens and will know that all other
processes are awake. 2

In applications of wakeup protocols, it is often desirable for the processes to know the
value of τ so that a process learning that τ processes are awake can stop participating in
the wakeup protocol and take some action based on that knowledge. The See-Saw protocol
can be easily modified to have this property by adding a termination rule immediately after
Rule 1:

Rule 1a: (End of protocol) Applicable if the scheduled process is on the See-Saw and sees
at least 2τ tokens, where the number of tokens the process sees is the number it
possesses, plus one if a token is present in the token slot. The process thus knows
that τ processes have waked up. It gets off the See-Saw (i.e., terminates) by setting
its state to “got off”.

The See-Saw protocol can also be used to solve the leader election problem by electing
the first process that sees 2n tokens. By adding a 5th value, everyone can be informed that
the leader was elected, and the leader can know that everyone knows. Now, the leader can
transmit an arbitrary message, for example a consensus value, to all the other processes
without using any more new values through a kind of serial protocol. This leads to our next
theorem.

Theorem 3.2: In the absence of faults, it is possible to reach consensus on one of k values
using a single 5-valued shared register.

Proof: Assume the processes have been running the See-Saw protocol in which each process
initially has 2 tokens. A process becomes leader when it accumulates 2n tokens, at which
time possibly one more token remains elsewhere in the system.

Let end be a 5th value. The leader now puts end in the shared register. Any process
seeing end for the first time replaces it with (no token present, left side down). The leader
repeats this n − 1 times, waiting each time for end to be removed from the register, after
which time each other process knows of the existence of the leader. When the leader notices
the last end disappear, it knows that everyone knows.

Note that at the start of these exchanges, all other processes save one are out of tokens
and will ignore all messages except end. Any non-leader process possessing a single token
will either ignore the message (no token present, left side down), or it will change it to (token
present, right side down), depending on its type bit, and thereafter ignore all messages
except end. Thus, from the time the leader is elected until the time that everyone knows
of its election, the only possible shared register values are end, (no token present, left side
down), and (token present, right side down). Hence, the remaining two values, (no token
present, right side down), and (token present, left side down), can be reused to initiate
sending the message, for they will not appear until after the leader knows that everyone

9

knows. Call these values data1 and ack1, respectively. Call values (no token present, left
side down) and (token present, right side down) data2 and ack2, respectively.

Let 1 ≤ m ≤ k be the consensus value, which we take to be the leader’s initial value.
Here is the protocol that the leader now uses to send m to all other processes. The leader
executes m data phases. Each process counts the number of data phases executed. At the
end of the m phases, the leader terminates the protocol by putting end back in the register.
Each process terminates when it sees end, in which case it also knows the number of phases
and hence the consensus value.

The first data phase involves the leader putting data1 into memory n − 1 times. Each
follower process, upon seeing data1, replaces it with ack1, increments its phase counter, and
enters the next phase, where it waits for data2 or end. The second phase uses data2 and
ack2, and subsequent phases alternate between the two versions of the values, odd numbered
phases using data1 and ack1, and even numbered phases using data2 and ack2. 2

Finally, we claim that the See-Saw protocol cannot be improved to use only a single
binary register. A slightly weaker result than Theorem 3.3 was also proved by Joe Halpern
[Hal]. The question whether 3 values suffice is still open.

Theorem 3.3: There does not exist a solution to the wakeup problem which uses only a
single binary register when τ ≥ 3.

In order to prove Theorem 3.3, we first prove a simple lemma. We say that a process writes
the value a∞, if the process writes a, and at the infinite extension in which this process is
the only one that is activated, a appears infinitely many times. We notice that when the
memory is bounded, for any run ρ and any process p, if p is run alone from ρ then p must
eventually write a∞, for some a.

Lemma 3.1: In any wakeup protocol where τ ≥ 2, if the initial value is a and only one
process wakes up and it is activated alone forever then it will never write a∞.

Proof: Assume to the contrary that the lemma does not hold. We show that this leads
to a contradiction by constructing a n-fair run in which the initial value of that shared
register is a, the value a appears infinitely many times, and yet no process knows that any
other process is awake. We construct the run ρ by activating the processes in a round robin
fashion infinitely many times, starting with a as the initial value. Each time a process is
scheduled, we let it run until it writes a∞. Each process cannot distinguish ρ from the run,
constructed similarly, in which it is the only process that is activated. Hence no process
ever knows that any other process is awake. 2

Proof of Theorem 3.3: We first assume that n is even, and construct a n-fair run, called
ρ, such that in each prefix of that run each process only knows that one other process is
awake.

Assume that the initial value is b ∈ {0, 1}, let q be an arbitrary process, and consider
the following scenario. First q runs alone until it writes a∞ (by Lemma 3.1 a 6= b). At that
point we interfere and flip the shared bit so that its value is again b. Afterwards we let q
continue until it writes a∞ again and then we flip the bit and so on. Let flip(b) be the
number of times q writes a∞ at such an infinite run. We consider the two possible cases:

The first case is when both flip(0) and flip(1) are infinite. We construct the run ρ

10

by activating the processes in a round robin fashion infinitely many times, starting with
0 as the initial value. Each time a process is scheduled, if the value of the shared bit is
a (b) we let it run until it writes b∞ (a∞). Each process cannot distinguish ρ from the run,
constructed similarly, in which only two processes participate. Hence no process ever knows
that more than one other process is awake.

The other case is the negation of the previous one. Assume w.l.o.g. that flip(0) = k
for some positive number k, and that flip(0) ≤ flip(1). We construct the run ρ by first
activating the processes in a round robin fashion exactly as in the previous construction but
only for k rounds, starting with 0 as the initial value. After k rounds the value of the shared
bit is 0. We extend this run to a n-fair run by continuing activating the processes in a round
robin fashion letting each process make one or more steps whenever it is scheduled until it
writes 0∞ (note that this is always possible since flip(0) ≤ flip(1)). As in the previous
case, no process can distinguish this run from the run, constructed similarly, in which only
two processes participate. Hence no process ever knows that more than one other process
is awake. This completes the proof when n is even.

Assume that n is odd. Let m = n − 1. Since m is even we can construct exactly as
before a m-fair run, called ρ, in which no process ever knows that more than one other
process is awake. Let q be the remaining process. We now construct ρ′ as follows. We start
with 1 as the initial value and let q run until it writes (as is assured by Lemma 3.1) 0∞.
Then alternately we let the other m processes run as in ρ until 0 appears, then we let q take
one or more steps until 0 appears (this is assured since previously q wrote 0∞) and so on.
Clearly, q cannot distinguish ρ′ from a run where it is the only process that is activated,
and hence never know that any of the other processes is awake. The other processes, cannot
distinguish ρ′ from ρ and hence never know (as in ρ) that more than one other process is
awake. 2

4 Fault-tolerant Solutions

In this section, we explore solutions to the wakeup problem which can tolerate t > 0 process
failures. The See-Saw protocol, presented in the previous section, cannot tolerate even a
single crash failure for any τ > n/3. The reason is that the faulty process may fail after
accumulating 2n/3 tokens, trapping two other processes on one side of the See-Saw, each
with 2n/3 tokens. When τ ≤ n/3, the See-Saw protocol can tolerate at least one failure. As
the parameter τ decreases, the number of failures that the protocol can tolerate increases.
This fact is captured by the following theorem.

Theorem 4.1: The See-Saw protocol is a wakeup protocol for n, t, τ , where

τ ≤ (2n− 1)/(2t + 1) + 1
2

.

Proof: Failures affect the protocol in two ways: First, tokens possessed by a failed process
are lost to the system. Second, failures can disrupt the balance condition on the number
of active processes of each type. Thus, after t failures, up to t(2τ − 1) tokens can be lost,
and the number of active processes of each type can differ by up to t + 1. (If a faulty

11

process accumulates 2τ tokens, it knows that at least τ processes are awake, and the goal
of the protocol is achieved.) This implies that when one reaches a stage in which there are
either no emitters or no absorbers, there can remain as many as t + 1 active processes. In
order to guarantee termination, we must be assured that at least one of these remaining
processes holds at least 2τ tokens. Since the other t active processes can each hold 2τ − 1
tokens, the total number of tokens remaining after t failures must be at least 2τ + t(2τ −1).
(Notice that at the point when one process accumulates 2τ tokens, there is no token in the
shared register.) Hence, we must have 2n− t(2τ − 1) ≥ (t + 1)(2τ − 1) + 1. Solving, we get
2n ≥ (2t + 1)(2τ − 1) + 1, so τ ≤ ((2n− 1)/(2t + 1) + 1)/2. 2

If one insists that some non-failing process learns that τ non-failing processes have waked
up, then a process terminates when it collects 2(τ + t) tokens, and each failing process can
take at most 2(τ + t) tokens with it (since it stops accumulating tokens when it has that
number). Hence, we get the inequality 2n− t(2(τ + t)) ≥ (t + 1)(2(τ + t)− 1) + 1. Solving,
we get 2n ≥ 2(2t + 1)(τ + t)− t, so τ ≤ (2n + t)/(2(2t + 1))− t. We note that the See-Saw
protocol can tolerate up to n/2− 1 initial failures [FLP85, TKM89b].

As we can see the See-Saw protocol needs only 4 values but is very sensitive to failures.
Let us define ψ = τ/(n − t) as the sensitivity parameter of a wakeup protocol. Clearly, in
the See-Saw protocol, when t is a constant fraction of n, the limit of ψ as n goes to infinity
is zero. In the rest of this section, we present three t-resilient wakeup protocols. In the first
two protocols ψ = 1, but they need n and 8t+1 values. In the third protocol ψ ≥ 1/2, but
it needs only O(t) values.

Theorem 4.2: For any t < n/6, there is a wakeup protocol which uses a single 8t+1-valued
register and works for any τ ≤ n− t.

Proof: The solution is constructed using t+1 copies of the See-Saw protocol. Before going
into details let us first reexamine the See-Saw protocol. Consider the following situation.
There are only three processes, and initially there is a token in the shared variable. Let
each process make one move. Now there are two emitters and one absorber. If at that point
the absorber fails the other two processes are captured forever in the protocol.

It is not difficult to see that t faulty processes can trap at most t + 1 other processes in
an execution of the See-Saw protocol. (I.e., if there is a deadlock then at most t + 1 correct
processes have not yet terminated.) The proof of that fact follows from the invariant that
the difference between emitters and absorbers is at most one.

Also, we observe that if we have a leader which is guaranteed not to fail then one bit is
sufficient in order for the leader to learn that n − t processes are awake, assuming up to t
failures. This goes as follows: When the leader reads 1 it writes 0 otherwise it waits. When
a slave reads 0 it writes 1 otherwise it waits. Each slave changes the bit exactly two times.
When the leader learns that the bit has been changed 2(n − t) − 3 times from 0 to 1, it
knows that n− t processes (including itself) are awake. Call this trivial protocol the Leader
protocol.

Using these observations we are ready to present, for any t < n/6, a t-resilient wakeup
protocol for τ = n−t, which uses a single 8t+1-valued register. In this protocol the processes
participate in t + 1 See-Saw protocols in a sequential manner. That is, processes get on the
i’th protocol only after they get off the i− 1 protocol. In addition all processes participate
in t + 1 Leader protocols in parallel. That is, each process participates in one See-Saw

12

protocol and in t + 1 Leader protocols at the same time.
Each process behaves according to the following rules,

For all 1 ≤ i ≤ t + 1:

• A process that accumulates n + 1 tokens in the i’th See-Saw protocol becomes the
leader of that protocol, and takes the role of the leader in the i’th Leader protocol,
(and participate as a slave in all other Leader protocols).

• At any time a process that is not a leader at the i’th See-Saw protocol participates
as a slave in the i’th Leader protocol.

• Once a leader is elected in the i’th See-Saw protocol, it immediately stops participating
in this protocol and participates only in all the t+1 Leader protocols. (The justification
for that is that, if the leader never fails then eventually it will learn that n−t processes
are awake. If it does fail then we can assume w.l.o.g. that it always fails immediately
after it is elected.)

This completes the description of the protocol.
The correctness proof is as follows. Since, once a process accumulates n + 1 tokens in

the i’th See-Saw protocol, it stop participating in it, no other process will ever accumulate
n+1 tokens at this See-Saw protocol. Hence, at each See-Saw protocol at most one leader is
elected and at each Leader protocol at most one process participates as a leader. The next
observation is that, if no reliable leader is elected in one of the first t See-Saw protocols,
then eventually a reliable leader is elected at the t + 1 See-Saw protocol. The reason for
that is as follows. Assuming no reliable leader is elected in the first t See-Saw protocols
implies that t processes already fail, and hence any process that participates in the t + 1
protocol has to be reliable. The total number of processes that can either fail or be trapped
in the first t See-Saw protocols is at most 3t. Hence, since t < n/6, it follows that more
than n/2 processes will eventually participate in the t+1 See-Saw protocol and one of them
will eventually be elected. Thus, eventually a reliable leader is elected and it will learn that
n− t processes are awake by participating as a leader in one of the leader protocols. 2

We notice that instead of using a single 8t+1-valued shared register, it is possible to use
t + 1 4-valued registers and t + 1 binary registers where a process can read-modify-write
only one such register at a time. Although the protocol sensitivity parameter is optimal,
its space complexity grows exponentially with t. Notice that when the number of failures t
is a constant, one process can learn that n− t processes are awake with a constant number
of values.

Theorem 4.3: For any t < n, there is a wakeup protocol which uses a single n-valued
register and works for any τ ≤ n− t.

Proof: The solution uses a single register called counter, whose values are {0, ..., n − 1}.
Each process initially records the value of the counter and increments it by 1 (mod n).
Thereafter, it reads the value of the counter until it finds out that the counter has advanced
by at least τ , which implies that at least τ processes are awake. Clearly, at least one reliable
process must see this. 2.

13

For later reference we call the above protocol the counter protocol. Although the Counter
protocol sensitivity parameter is optimal (i.e., ψ = 1) its space requirement seem to be to
big, when t is small. Hence, the protocol of Theorem 4.2, is better than the Counter protocol
for t ¿ log(n). In our next solution ψ is not optimal and ranges from 1/2 to 1 depending
on the value of t, however its space complexity is linear in t.

Theorem 4.4: For any t < n/2, there is a wakeup protocol which uses a single O(t)-valued
register and works for any τ ≤ bn/2c+ 1.

Proof: In the sequel, we describe for any t < n/10, a wakeup protocol for τ = bn/2c +
1, which uses a single O(t)-valued register. The protocol is presented together with its
correctness proof. When t > n/10 we may use the Counter protocol mentioned before. The
protocol is obtain by using a counter and the See-Saw protocol. The size of the counter is
n/k where the value of k is defined later. Each process executes the See-Saw protocol and
accesses the counter as follows.

• Each process starts with only one token.

• A process increments the counter if and only if the following holds,

– it is an absorber (in the See-Saw protocol), and

– it accumulates k tokens, and

– if it is the second time the process tries to increment the counter then it has to
be the case that the counter has to be incremented at least t times from the first
time it has incremented the counter.

• When a process increments the counter it erases all the k tokens it holds, and continues
to participate as an absorber in the See-Saw protocol.

• An absorber in the See-Saw protocol never collects more than k tokens. (If it has k
token and can not increment the counter, then it does nothing until it either becomes
an emitter or can increment the counter.)

Once a process learns that the counter has been incremented by more than n/(2k) times,
it knows that more than half of the processes are awake.

It remains to decide what is the value of k as a function of n and t. We consider the
following observations.

1. If there is a deadlock then at most 4t+1 processes are trapped in it. (2t by being faulty
or absorbers with k tokens that do not fulfill the conditions to increment the counter,
and 2t + 1 emitters.) Since each process may hold at most k tokens (4t + 1)k + 1
tokens may be lost. (The 1 is for the token in the shared register.)

2. At the time the first non faulty process reads (and remembers) the counter value,
the counter has been incremented at most t times from start up time of the protocol.
Hence, the kt tokens that are used for these t increments may be lost.

3. From (1) and (2) at most (5t + 1)k + 1 tokens may be lost.

14

4. To ensure that eventually one correct process will read the counter and will learn that
more than n/2 processes are awaken, it is enough to require that (5t + 1)k + 1 < n/2.

5. In order that the number of values of the counter will be O(t) we should choose k
such that n/k = O(t).

Hence, we end with three requirements for k: (1) k is a positive integer,
(2) k < (n − 2)/(10t + 2), and (3) n/k = O(t). From (1) and (2) and the fact that t is
an integer, it follows that t < n/10. Taking k = b(n − 3)/(10t + 2)c is the best choice for
k. For the See-Saw protocol we need 4 values, and for the Counter protocol we need n/k
values, which (for large n) is less then 12t. Hence, a single 48t-valued register suffices for
the protocol we just described. 2

In this last protocol, one process learns that n/2 other processes are awake. In order for
one process to learn that ln processes are awake, we should replace “(5t + 1)k + 1 < n/2”
in Observation 4, with “(5t + 1)k + 1 < (1− l)n” and get that a single O(t/(1− l))-valued
register suffices for solving the wakeup problem for τ = ln.

5 A Lower Bound

In this section, we establish a lower bound on the number of shared memory values needed
to solve the wakeup problem, where only one process is required to learn that τ processes are
awake, assuming t processes may crash fail (i.e., p = 1). To simply exposition, we assume
that 1 < t ≤ 2n/3 and τ > dn/3e. Also, recall that we already assumed that τ ≤ n− t. For
the rest of this section, let 0 < ε ≤ 0.5 be fixed (but arbitrary), and let

W =
εt2

2(n− t)
; α =

1
log2(

n−t
(1−ε)t + 2)

. (1)

Theorem 5.1: Let P be a protocol that solves the wakeup problem for parameters n, t and
τ . Let V be the set of shared memory values used by P . Then |V | > (W + 1)α.

When we take t to be a constant fraction of n we get the following immediate corollary.

Corollary 5.1: Let P be a protocol that solves the wakeup problem for parameters n, t and τ ,
where t ≥ n/c. Let V be the set of shared memory values used by P . Let γ = 1/(log2(c + 1))
and δ > 0. Then, |V | = Ω(nγ−δ).

Theorem 5.1 is immediate if V is infinite, so we assume throughout this section that
V is finite. The proof consists of several parts. First we define a sequence of directed
graphs whose nodes are shared memory values in V . Each component C of each graph
in the sequence has a cardinality kC and a weight wC . We establish by induction that
wC < k

1/α
C − 1. Finally, we argue that in the last graph in the sequence, every component

C has weight wC ≥ W . Hence, |V | ≥ kC > (W + 1)α.

5.1 Reachability Graphs and Terminal Graphs

Let V be the alphabet of the shared register. We say that a value a ∈ V appears m times
in a given run if there are (at least) m different prefixes of that run where the value of the

15

shared register is a.

a
r−→ b denotes that there exists a run in which at most r processes participate, the initial

value of the shared register is a, and the value b appears at least once.

a
r=⇒ b denotes that there exists a run in which exactly r processes participate, each process

that participates takes infinitely many steps, the initial value of the shared register is
a, and the value b appears infinitely many times.

Clearly, a
r=⇒ b implies a

r−→ b but not vice versa. Also, for every a and for every r ≤ n,
there exists b such that a

r=⇒ b.

We use the following graph-theoretic notions. A directed multigraph1 G is weakly con-
nected if the underlying undirected multigraph of G is connected. A multigraph G′(V ′, E′)
is a subgraph of G(V, E) if E′ ⊆ E and V ′ ⊆ V . A multigraph G′ is a component of a
multigraph G if it is a weakly connected subgraph of G and for any edge (a, b) in G, either
both a and b are nodes of G′ or both a and b are not in G′. A node is a root of a multigraph
if there is a directed path from every other node in the multigraph to that node. A rooted
graph (rooted component) is a graph (component) with at least one root.

A labeled multigraph is a multigraph together with a label function that assigns a weight
in N to each edge of G. The weight of a labeled multigraph is the sum of the weights of its
edges. We now define the notion of a reachability graph of a given protocol P .

Definition: Let V be the set of shared memory values of protocol P . The reachability
graph G of protocol P is the labeled directed multigraph with node set V , and which has
an edge from node a to node b labeled with r iff a

r=⇒ b holds. (Note that there may be
several edges with different labels between the same two nodes. Note also that G is finite
since a

r=⇒ b implies that r ≤ n.)

Definition: A graph C is closed at node a w.r.t. G if a is in C and for every node b in
G, if (a, b) is an edge of G then b is in C.

Definition: A multigraph T is terminal w.r.t. G if T is a subgraph of G, all of T ’s
components are rooted, and T has a component C with root a among its minimal weight
components that is closed at node a w.r.t. G.

In the rest of the section we prove Theorem 5.1 by constructing a multigraph T which is
terminal w.r.t. G, in which every component with weight w and size k satisfies k1/α − 1 >
w ≥ W .

5.2 Reachability Graphs

The reachability graphs are defined for all protocols. Now we concentrate on such graphs
constructed from wakeup protocols only. We show that when the weight of a rooted sub-
graph, say C, is sufficiently small, an edge exists with a label q from a root of C to a node
not in C and we can bound the size of q.

For later reference we call the set of the following three inequalities,
1A multigraph can have several edges from a to b.

16

(i) zq + (z − 1)w ≤ n,
(ii) zq ≥ n− t,
(iii) max(q, w) < τ

the zigzag inequalities. These inequalities play an important role in our exposition.

Lemma 5.1: Let G be a reachability graph of a wakeup protocol with parameters n, t, τ ,
and let C be a rooted subgraph of G with root a and weight w. If there exist positive integers
z and q that satisfy the zigzag inequalities, then there exists a node b of G such that a

q
=⇒ b,

and every such node b is not in C.

Proof: Let z and q be positive integers that satisfy the zigzag inequalities. By (i), q ≤ n,
so there exists b such that a

q
=⇒ b. We show that b 6∈ C.

Assume to the contrary that b ∈ C. Let ρ be a q-fair run starting from a in which b is
written infinitely often. Since b is in C, there is a path from b to a such that the sum of all
the labels of edges in that path is at most w and hence b

w−→ a. This allows us to construct
a run with zq non-faulty processes starting with a as follows:

Run q processes according to ρ until b is written. Run w processes until a is
written. (This must be possible since b

w−→ a.) Let these w processes fail. Run
a second group of q processes according to ρ until b is written. Run a second
group of w processes until a is written, and let them fail. Repeat the above until
the zth group of q processes have just been run and b has again been written.
At this point, zq processes belong to still-active groups, and (z − 1)w processes
have died. If any processes remain, let them die now without taking any steps.
Now, an infinite run ρ′ on the active processes can be constructed by continuing
to run the first group according to ρ until b is written again, then doing the
same for the second through zth groups, and repeating this cycle forever.

The result is a zq-fair run. Moreover, no reliable process can distinguish this run from ρ,
and hence no reliable process ever knows (in ρ′) that more than q processes are awake.
Also, obviously, no faulty process knows that more than w processes are awake. Since
max(q, w) < τ and zq ≥ n− t ≥ τ , this leads to a contradiction to the assumption that the
protocol solves the wakeup problem. 2

Lemma 5.2: Assume 1 ≤ w ≤ W , where w is an integer. Let

q =
⌈
w(n− t)
(1− ε)t

⌉
, z =

⌊
n− t

q

⌋
+ 1. (2)

Then z and q are positive integers which satisfy the zigzag inequalities.

Proof: From the assumption that 1 ≤ w, 0 < ε ≤ 0.5 and t ≤ 2n/3 it follows that
q ≥ d1/(2(1− ε))e = 1, and hence both z and q are positive integers.

To prove inequality (i), observe that from (2) it follows that z − 1 ≤ (n− t)/q. Thus,

zq = (z − 1)q + q ≤ n− t + q. (3)

Also, since 1 ≤ w ≤ W and ε ≤ 0.5, it follows from (2) that

q ≤
⌈

εt

2(1− ε)

⌉
≤ dεte. (4)

17

Hence, from (3) and (4) it follow that,

zq ≤ n− t + dεte = n− bt− εtc . (5)

Next we show that
(z − 1)w ≤ bt− εtc . (6)

Notice that,

q =
⌈
w(n− t)
(1− ε)t

⌉
≥ w(n− t)

(1− ε)t
. (7)

As already mentioned, from (2) it follows that z − 1 ≤ (n− t)/q, hence by using (7) we get
that z − 1 ≤ (1− ε)t/w. Since both z and w are integers, (z − 1)w ≤ bt− εtc. Thus, using
(5) and (6) we get that inequality (i) is satisfied.

Inequality (ii) is satisfied immediately since by (2) z > (n− t)/q.
Finally, we show that inequality (iii) is satisfied. Recall that we assume that t ≤ 2n/3

and τ > dn/3e. It follows from these assumptions that τ > dt/2e. Since q ≤ dεte ≤ dt/2e,
obviously q < τ . Also, since w ≤ W and t ≤ 2n/3, substituting in (1) gives w ≤ εt ≤ n/3,
and hence w < τ . 2

5.3 Main Construction

In this subsection, we first prove that any rooted component of any terminal graph w.r.t.
G has weight > W . Then we use this to construct a subgraph T of G all of whose rooted
components have size > (W + 1)α.
Lemma 5.3: Let G be the reachability graph of a wakeup protocol with parameters n, t, τ
and let T be terminal w.r.t. G. Any rooted component of T has weight > W .

Proof: Assume that the lemma is false. Then T has a minimal-weight component C with
root a, and weight 0 ≤ w ≤ W , such that C is closed at a. If w = 0 then q = 1 and z = n−t
satisfy the zigzag inequalities, otherwise by Lemma 5.2, there exist positive integers q and
z that satisfy the zigzag inequalities. From Lemma 5.1, there is a node b not in C and an
edge a

q
=⇒ b in G, contradicting the assumption that C is closed at a. 2

Lemma 5.4: Let G be the reachability graph of a wakeup protocol with parameters n, t, τ .
There exists a subgraph T of G, all of whose rooted components have size > (W + 1)α.

Proof: The following procedure constructs T by adding edges one at a time to an initial
subgraph T0 of G until step 2 fails. The initial subgraph T0 consists of all the nodes of G.
First, for each node a we place exactly one outgoing edge a

1=⇒ b in T0, and then we delete
from each cycle one arbitrary edge. We note two facts about T0: (1) for every edge a

1=⇒ b,
a 6= b, and (2) every component of T0 is a directed rooted tree. Fact (1) is a simple variant
of Lemma 5.1, while (2) follows from the observation that every component of T0 has k
vertices and k − 1 edges for some k ≥ 2, the out degree of every vertex is at most one, and
it contains no cycles.

At any stage of the construction, every component of the graph built so far will be a
directed rooted tree. Added edges always start at a root and end at a node of a different
component. After adding an edge (a, b), the components of a and b are joined together into

18

a single component whose root is the root of b’s component, and the weight of the new
component is the sum of the weights of the two original components plus the label of the
edge from a to b.

Procedure for adding a new edge to T :

Step 1: Select an arbitrary component C of minimal weight w, with root a.

Step 2: If w ≤ W then find the smallest integer q for which there is an edge a
q

=⇒ b in G
such that b is not in C. This step fails if w > W .

Step 3: Place the edge a
q

=⇒ b into T .

First note that, by Lemma 5.3, if w ≤ W then T is not terminal, and hence Step 2 cannot
fail. Let Ti be a graph that is constructed after i applications of the above procedure, where
T0 is an initial graph as defined above. Clearly, any such sequence {T0, T1, . . .} is finite. Let
Tlast be the last element in this sequence. Then the weight of any component in Tlast is
greater than W .

Let β = 1/α. We prove by induction on i, the number of applications of the procedure,
that for any graph Ti, all of the components of Ti are rooted, and for any rooted component
C it is the case that w < kβ − 1, k ≥ 2 and w ≥ 1, where k is the size of C and w is its
weight. This together with the fact that eventually every component C has weight greater
than W completes the proof.

As discussed before, each component C of T0 has a root and has size k at least 2. The
component C consists of at most k − 1 edges with label 1, so its weight is at most k − 1.
Hence, the base case holds since β > 1.

Since T0 is a subgraph of Ti which also includes all nodes of Ti, it follows that the
size and weight of any rooted component of Ti are at least 2 and 1, respectively. Now,
suppose the procedure adds an edge of label q from component C1 of size k1 and weight
w1 to component C2 of size k2 and weight w2. By step 1, the new edge emanates from a
minimal weight component, so w1 ≤ w2. The weight w of the newly formed component is
w1 + w2 + q, and the number of nodes k is k1 + k2. We show now that w < kβ − 1.

By Step 2 of the procedure, w1 ≤ W . Hence, it follows from Lemma 5.2 that there exist
positive integers z′ and q′ that satisfy the zigzag inequalities and q′ = dw1(n−t)/((1−ε)t)e.
Hence by Lemma 5.1 there is an edge of label q′ from a root of C1 to C2. Thus, by the
minimality of q (the weight of the edge in step 2), it follows that q ≤ q′ which implies that
q ≤ w1(n− t)/((1− ε)t) + 1. Let r = (n− t)/((1− ε)t) + 1. Then,

w = w1 + w2 + q ≤ r w1 + w2 + 1. (8)

Let k1
′
and k2

′
be defined by the equalities w1 = k1

′β−1, and w2 = k2
′β−1. Then k

′
1 ≤ k

′
2.

We claim that

r w1 + w2 + 1 = r (k
′
1

β − 1) + (k
′
2

β − 1) + 1 = r k
′
1

β
+ k

′
2

β − r

< r k
′
1

β
+ k

′
2

β − 1 ≤ (k
′
1 + k

′
2)

β − 1. (9)

Using the fact that r > 1, everything except the rightmost inequality in Equation (9) is
immediate. To prove this last inequality, observe that 2β = r + 1, hence equality holds for

19

k
′
1 = k

′
2. As k

′
2 is increased to be larger than k

′
1, the right side increases more rapidly than

the left side since β > 1; hence, the inequality holds. Finally, by the induction hypothesis,
k
′
1 < k1, and k

′
2 < k2. Hence,

(k
′
1 + k

′
2)

β − 1 < (k1 + k2)β − 1 = kβ − 1. (10)

Putting equations (8)−(10) together gives w < kβ − 1, or equivalently k > (w + 1)α. This
completes the proof of the lemma. 2

Theorem 5.1 follows immediately from Lemma 5.4.

5.4 Remarks

Corollary 5.1 gives the bound we obtain in the case that t = Ω(n). However, when t = O(nξ)
for ξ < 1 a constant, one gets that our lower bound (W + 1)α = O(1) and hence is
not interesting. One might wonder whether this defect results simply from the various
approximations we made in proving Theorem 5.1. This seems not to be the case but is
rather a limitation of our proof technique. When t = O(nξ), the length of the sequence of
graphs {T0, T1, . . .} is bounded by a constant, so the size of the largest component of the
last element T is also a constant. This remains true even if one uses the least q satisfying
the zig-zag inequalities rather than the q guaranteed by Lemma 5.2. Hence, to obtain a
non-trivial lower bound in these cases will require either a better bound on the value q
in Step 2 of the procedure than can be obtained from the zig-zag inequalities, or else a
whole new proof technique. This also leaves open the possibility that Theorem 4.4 can be
substantially improved. Finally, observe that the only place where we used the assumption
τ > dn/3e is in the last paragraph of the proof of Lemma 5.2, where it is used to prove that
τ > dt/2e. Thus, our results remain correct under the weaker restriction τ > dt/2e.

6 Relation to Other Problems

In this section we show that there are efficient reductions between the wakeup problem for
τ = bn/2c+1 and the consensus and leader election problems. Hence, the wakeup problem
can be viewed as a basic problem that captures the inherent difficulty of these two problems.

Lemma 6.1: In any t-resilient consensus (leader election) protocol, a process decides (is
elected) only when at least t + 1 processes are awake.

Proof: We first prove the lemma for a consensus protocol. Assume to the contrary that in
some consensus protocol, there exists a process q and there exists a run, say ρ, in which q
decides and yet no more than t processes participate in ρ. Let us assume w.l.o.g. that in ρ,
process q decides on 0, and that the value of the shared register is a. Let Q be the set of
processes that do not participate in ρ. Clearly, |Q| ≥ n− t.

We can now construct a new run in which all processes in Q are correct, the initial value
of the shared register is a, only processes in Q participate in it, and all processes in Q read
the input value 1. Since the protocol can tolerate up to t failures this run has a prefix, say
ρ′, in which all processes decide. The processes that participate in ρ′ must decide on the

20

value 1 since this prefix can be extended to a run where all the n processes read the value 1
(and hence, according, to the definition of the consensus problem must decide on 1). Since
the sets of processes which participate in ρ and ρ′ are disjoint, and the value of the shared
register at the end of ρ is the same as its value at the beginning of ρ′, the composition 〈ρ; ρ′〉
is a run. However, this leads to a contradiction since processes decide on both zero and one
at the same run.

The proof for a leader election protocol is similar. Assume to the contrary that in some
leader election protocol, there exists a process q and there exists a run, say ρ, in which q is
elected and yet no more than t processes participate in ρ. Let us assume w.l.o.g. that in ρ,
the value of the shared register is a. Let Q be the set of processes that do not participate
in ρ. Clearly, |Q| ≥ n− t.

We can now construct a run in which all processes in Q are correct, in which the initial
value of the shared register is a, and only processes in Q participate in it. Since the protocol
can tolerate up to t failures this run has a prefix, say ρ′, in which some process q′ 6= q is
elected and writes 1 in its output register (here we used the fact that a process can be
elected in a run only if it participates in this run). Clearly, the composition 〈ρ; ρ′〉 is a run.
However, this leads to a contradiction since two processes are elected at the same run. 2

The following theorem shows that in order to decide on some value (to be elected) in a
t-resilient consensus (leader election) protocol, it is necessary to learn first that at least t+1
processes are awaken. It also shows that in certain cases learning that t + 1 processes are
awaken is sufficient for making a decision. The assumption that the processes are symmetric,
is not used in the proof of that theorem.

Theorem 6.1: (1) Any t-resilient consensus (leader election) protocol is a t-resilient
wakeup protocol for any τ ≤ t + 1 and p = n − t (p=1); (2) For any t < n/2, there exist
t-resilient consensus and leader election protocols which are not t-resilient wakeup protocols
for any τ ≥ t + 2.

Proof: We prove the first part of the theorem. Assume to the contrary that for some
consensus (leader election) protocol there exists a process q and there exists a run in which
q decides (q is elected), and q does not know that at least t+1 processes are awake. Hence,
there exists a process q and there exists a run, say ρ, in which q decides (q is elected) and
yet not more than t processes participate in ρ. However, this contradicts Lemma 6.1.

We now prove the second part of the theorem. We first prove the second part for a
consensus protocol and then explain why it also holds for a leader election protocol. We
show a consensus protocol in which, in certain n-fair run, all the processes decide on some
value and yet no process ever knows (at this run) that more than t+1 processors are awaken.
The protocol uses values (r, x, y, z), where r ∈ {0, ..., m− 1}, where m = n2 − 2nt, and x, y
and z each belongs to {0, 1} (note that, since t < n/2, we have that m ≥ n). For integers
0 ≤ i, j ≤ m−1, let [i, j] denote the cyclic interval [i, i⊕1, · · · , j], where ⊕ denotes addition
modulo m. For k = 0, · · · , n−1, the cyclic intervals [k(n−2t), k(n−2t)⊕ (t+1)] are called
critical intervals (Note that critical intervals may overlap).

The three bits are used as follows: x is flipped exactly once when the decision is made,
y is used to hold the decision value, z is used to signal processes that wake up after the

21

decision is made that a decision has already been reached and hence they should decide on
the value in y.

Each process initially records the value of r in a local variable init, and then increments
r by 1. Also it records the value of x, and sets z = 0. On alternate steps, it polls r,x and z
to see if they have changed. If either x or z has changed, then a decision has already been
reached and the decision value is in y, in which case the process decides on y, and thereafter
sets z = 1 on each step. Otherwise, if it realizes that the cyclic interval [init, r] includes a
critical interval then it becomes the “decider” process. It then stops running the wakeup
protocol, chooses its input as the consensus value, and simultaneously flips x, writes the
consensus value to y, and sets r = 1. All of this is done with a single read-modify-write.
Thereafter it sets z = 1 on each step.

The proof that this works is as follows. Until some process becomes the “decider”, every
process runs the protocol and no process changes x nor writes 1 to z. Since the longest
cyclic intervals which do not contain a critical interval are of length n− t− 1, we have that
every cyclic interval [i, i ⊕ j] where n − t ≤ j ≤ n contains a critical interval. Therefore,
some process eventually polls r such that the cyclic interval [init, r] of this process includes
a critical interval. This process becomes a decider. Every other process that waked up
before the decision was made will see on its next step that x has changed and hence no
such process will also become a decider. Since fewer than n − t processes wake up after
the decision has been made, and they are the only ones now affecting r, r is incremented
by less than n − t after a decision is made. Since r is set to 1 by the decider, it must be
incremented by at least n − t in order for any of these late processes to become a decider.
Thus, none of these processes becomes a decider, and hence there is a unique decider. It
follows that x and y are written to exactly once as desired, so every process that decides
on something chooses the same value.

It remains to show that every process decides. Each process that wakes up before the
consensus value has been chosen is either the decider or learns the consensus value on its
next step thereafter, for it will see that x has changed. Since there are more than t such
processes, at least one non-failing process learns the consensus value, and that process writes
1 to z infinitely many times. Since 0 is written to z at most n times, z eventually stabilizes
to 1. Thereafter, every process that has not already decided sees z = 1 and decides on its
next step.

Clearly, the above protocol also solves the leader election problem, since the process
called the “decider” is the elected leader, and every other process when it learns that a
decision has been made knows that it can not be elected. Finally, note that when the initial
value of r is k(n−2t) for some k, it is possible to reach a decision when only t+1 processes
are awake. 2

Corollary 6.1: There is no consensus or leader election protocol that can tolerate dn/2e
failures.
Proof: Consider a (n − t)-fair run in which only n − t processes are awake. By the first
part of Theorem 6.1, when a decision is made (a leader is elected) in this run, at least t + 1
processes are awake. Hence n− t ≥ t + 1, which implies the corollary. 2

Theorem 6.2: Any protocol that solves the wakeup problem for any t < n/2, τ > n/2 and
p = 1, using a single v-valued shared register, can be transformed into a t-resilient consensus

22

(leader election) protocol which uses a single 8v-valued (4v-valued) shared register.

Proof: First we show a reduction from the consensus problem to the wakeup problem. Sup-
pose the wakeup solution uses values 1, ..., v. The consensus protocol uses values (r, x, y, z),
where r ∈ {1, ..., v} and x, y and z each belongs to {0, 1}. The three bits are used as follows:
x is flipped exactly once when the decision is made, y is used to hold the decision value, z
is used to to signal processes that wake up after the decision is made that a decision has
already been reached and hence they should decide on the value in y.

Each process initially stores the value of x and sets z = 0. It then begins running the
wakeup protocol. On alternate steps, it polls x and z to see if they have changed. If either
has changed, then a decision has already been reached and the decision value is in y, in
which case the process abandons whatever else it was doing, decides on y, and thereafter
sets z = 1 on each step. Otherwise, it continues running the wakeup protocol. If it learns
that more than n/2 processes have waked up, if x and z still have not changed, then it
becomes the “decider” process. It then stop running the wakeup protocol, chooses its input
as the consensus value, and simultaneously flips x and writes the consensus value to y. All
of this is done with a single read-modify-write. Thereafter it sets z = 1 on each step.

The proof that this works is fairly straightforward and is similar to the proof of the
previous theorem. Until some process decides, every process runs the wakeup protocol and
no process changes x nor writes 1 to z. Hence, eventually some process will learn that
more than n/2 processes have waked up, and that process will become a decider. Every
other process that waked up before the decision was made will see on its next step that x
has changed and will abandon the wakeup protocol; hence no such process will become a
decider. Since fewer than n/2 processes wake up after the decision has been made, and they
are the only ones now affecting r, none of them will learn that more than n/2 processes
have waked up until they see z = 1. Hence, none of them will become a decider, so there
is a unique decider. It follows that x and y are written to exactly once as desired, so every
process that decides on something chooses the same value.

It remains to show that every process decides. Each process that wakes up before the
consensus value has been chosen is either the decider or learns the consensus value upon
seeing that x has changed. Since there are more than n/2 of such processes, at least one
non-failing process learns the consensus value, and that process writes 1 to z infinitely many
times. Since 0 is written to z at most n times, z eventually stabilizes to 1. Thereafter, every
process that has not already decided sees that z = 1 and decides on its next step.

Clearly the above reduction can be used, with minor modifications, as a reduction from
the leader election problem to the wakeup problem. That is so, since the process that
becomes the “decider” is the elected leader and every other process when it learns that a
decision has been made knows that it can not be elected. Finally the bit y, which is used
to hold the decision value, is not needed in this reduction, and hence it is sufficient to have
a single 4v-valued register. 2

Corollary 6.2: (1) There is a (dn/2e − 1)-resilient consensus (leader election) protocol
that uses a single 8n-valued (4n-valued) shared register, and (2) for any t < n/2 there is a
t-resilient consensus (leader election) protocol that uses O(t)-valued shared register.
Proof: From Theorem 6.2, and Theorems 4.3 and 4.4 . 2

23

The constants in Corollary 6.2 can be improved. In fact we have designed a (dn/2e −
1)-resilient consensus (election) protocol that uses a single 3n-valued (2n-valued) shared
register. Next we show that the converse of Theorem 6.2 also holds. That is, the existence
of a t-resilient consensus or leader election protocol which uses a single v-valued shared
register, implies the existence of a t-resilient wakeup protocol for τ = bn/2c + 1, which
uses a single O(v)-valued shared register. The idea of the proof is based on the following
observation.

Lemma 6.2:

1. Let ρ and ρ′ be two runs of the same consensus protocol where at least one process
decides both in ρ and in ρ′; all the processes in ρ have the same input value, say a, and
when the first process decides (in ρ) it writes to the shared register some value, say c;
all the processes in ρ′ have the same input value, say b 6= a, and the run ρ′ starts such
that c as the value of the shared register. Let nρ (resp. nρ′) be the numbers of processes
that are awake in ρ (resp. ρ′) when the first process decides. Then nρ + nρ′ > n.

2. Let ρ and ρ′ be two runs of the same election protocol where some process is elected
both in ρ and in ρ′; when a process is elected in ρ the shared register has some value,
say c; the run ρ′ starts with c as the initial value of the shared register. Let nρ (resp.
nρ′) be the numbers of processes that are awake in ρ (resp. ρ′) when a process is
elected. Then nρ + nρ′ > n.

Proof: We start by proving the first part. Assume to the contrary that for some ρ and
ρ′ as above, nρ + nρ′ ≤ n. We can construct an n-fair run in which initially nρ processes
behave as in ρ, until the first of them decides on a. (Note that according to the definition
of the consensus problem it has to decide on a.) At this point put long delays on these
processes, and let different nρ′ processes behave as in ρ′, until someone decides on b. This
leads to a contradiction since processes decide on different values at the same run.

The proof of the second part is similar. Assume to the contrary that for some ρ and
ρ′ as above, nρ + nρ′ ≤ n. We can construct a n-fair run in which initially nρ processes
behave as in ρ, until a process is elected. At this point put long delays on these processes,
and let different nρ′ processes behave as in ρ′, until another process is elected. This leads
to a contradiction since two processes are elected at the same run. 2

Theorem 6.3: Any t-resilient protocol that solves the consensus or leader election problem
using a single v-valued shared register can be transformed into a t-resilient protocol that
solves the wakeup problem for any τ ≤ bn/2c + 1 which uses a single 4v-valued shared
register.

Proof: We show only the reduction from the wakeup problem to the consensus problem.
The reduction from the wakeup problem to the leader election problem is almost the same,
and the correctness proofs of the two reductions differ only by using different part of Lemma
6.2. Suppose the consensus solution uses values 1, ..., v. The wakeup solution based on it
uses values (r, x), where r ∈ {1, ..., v} and x ∈ {0, 1, 2, 3}. Informally, this protocol works
as follows. The processes run the consensus protocol such that each process considers
the value of x (mod 2) as its input. The first process to decide (while simulating the
consensus protocol), increments x by 1 (mod 4), and each process that notices that x has

24

been incremented by 1 restarts the simulation with the new input (i.e., x (mod 2)). A
process that notices that x has been incremented twice or more, realizes that at least two
such simulations have been completed and, by Lemma 6.2, it knows that a majority of
processes are awake.

Following is a detailed description. Each process initially stores the value of the shared
register (i.e., of r and x). It then begins running the consensus protocol using x (mod 2)
as its input. On alternate steps, in a single read-modify-write instruction, it polls r and x
and behaves as follows.

• If it notices that x has been incremented twice or more since the very beginning of
the simulation, then the process abandons whatever else it was doing, and terminates.
As we prove later, at that point the process knows that a majority of processes are
awake and hence fulfills the requirements of the wakeup problem.

• Otherwise, if x has not been changed since its previous step then the process continues
running the consensus protocol (by taking one more step). Otherwise, it restart the
simulation of the consensus protocol taking x (mod 2) as its input value. In case that
by simulating the consensus protocol the process reaches a decision (in the consensus
protocol), then it increments x by 1.

We now give a correctness proof of the reduction. The notion a round of a run corresponds
to a portion of a run between two successive changes of x. The first round is the portion
from the beginning of the run until the first time x is incremented. Note that after the
last round (if such a round exists) the processes may still continue running forever but, by
definition, the value x is never changed thereafter. A process participates in a given round
if during this round it simulates a step of the consensus protocol.

It should be noted that it is not clear that each round in a given run (of the simulation)
corresponds to a possible execution of the consensus protocol, since some processes may
participate in more than one round. In order for a round to correspond to a possible execu-
tion of the consensus protocol, it is sufficient to show that each process that participates in
a round does not participate in any previous round in which x (mod 2) had the same value.
This clearly holds in the first two rounds. The next two claims show that this holds in the
first four rounds. All the following claims refer to some specific (but arbitrary) infinite run
of the reduction, in which at least n− t processes are awake.

1. Let Si be the set of processes participating in round i. Then S1∩S3 = ∅ and S2∩S4 = ∅.
A process that participates in round i (i ∈ {1, 2}) will notice at round i + 2 (if it is
given a chance to precede) that x has been incremented twice and hence will terminate
without participating in round i + 2.

2. Each of the first four rounds corresponds to a prefix of a run of the consensus protocol.
This claim follows from the previous one since no process participates in both rounds
1 and 3, or in both rounds 2 and 4.

3. Once a process notices that x has been incremented twice or more, it knows that a
majority of processes are awake. By (2), we know that once x has been incremented
twice or more, a simulation of at least two prefixes of runs of the consensus protocol,

25

both satisfying the conditions of Lemma 6.2 have occurred, and hence by Lemma 6.2
a majority of processes have waken up.

4. In every run there are at least two rounds. A process terminates the simulation of the
consensus protocol, only when it learns that x has been incremented twice or more.
Hence, at least two rounds are guaranteed to be completed.

5. There are at most three rounds in each run.
Assume that four rounds are completed in some run. Let n1, n2, n3 and n4 be the
number of processes participating in the 1st, 2nd, 3rd and 4th rounds, respectively.
By (2), all four rounds correspond to possible runs of the consensus protocol in which
some process decides. This implies, by Lemma 6.2, that n1 +n2 > n and n3 +n4 > n.
Hence n1+n2+n3+n4 > 2n. On the other hand, by (1), n1+n3 ≤ n and n2+n4 ≤ n.
But this means that n1 + n2 + n3 + n4 ≤ 2n. A contradiction.

6. Eventually a non-faulty process learns that a majority of processes have waken up.
By Lemma 6.1 and (2), in each round at least t + 1 processes participate, and in
particular a non-faulty process participates in each round (that may be the same
process). We know by (4) and (5) that in each run x is incremented either two or
three times. Hence the non-faulty process that participates in the first round will
eventually notice that x has been incremented two or three times, and by (3) it will
know that a majority of processes are awake.

This completes the proof of the theorem. 2

We notice that with one additional bit, it is possible to inform everybody that a majority
of processes are awake. It follows from Theorem 6.3 that the lower bound we proved on the
previous section for the wakeup problem when τ ≥ bn/2c+ 1 also applies to the consensus
problem.

Corollary 6.3: Let P be a t-resilient consensus or leader election protocol, and let V be
the set of shared memory values used by P . Let W and α be defined as in Section 5. Then
|V | ≥ (W + 1)α/4.

Proof: Immediately from Theorem 5.1 and Theorem 6.3 . 2

Corollary 6.4: There is a t-resilient consensus protocol that uses O(v)-valued shared
register iff there is a t-resilient leader election protocol that uses O(v)-valued shared register.
Proof: Immediately from Theorem 6.2 and Theorem 6.3 . 2

7 Conclusions

We study the new wakeup problem in a new model where all processes are programmed
alike, there is no global synchronization, and it is not possible to simultaneously reset all
parts of the system to a known initial state.

Our results are interesting for several reasons:

• They give a quantitative measure of the cost of fault-tolerance in shared memory
parallel machines in terms of communication bandwidth.

26

• They apply to a model which more accurately reflects reality.

• They relate recent results from three different active research areas in parallel and
distributed computing, namely:

– Results in shared memory systems [Blo87, DGS88, FLBB89, Her91, Hem89,
Lam86, LA87, LF83, LP90, Mis91, Tau89a, TM89, VA86].

– The theory of knowledge in distributed systems [CM86, DM86, FHV84, FI86,
FI87, FZ88, Hal86, Had87, HF89, HM90, HZ87, KT86, Leh84, Maz89, MT88,
MT91, PR85, Mic89, Tut90].

– Self-stabilizing protocols [BGW89, BP89, Dij74, Dij86, DIM90, Gou89, Kru79,
KK90, Tau89b].

• They give a new point of view and enable a deeper understanding of some classical
problems and results in cooperative computing.

• They are proved using techniques that will likely have application to other problems
in distributed computing.

Acknowledgement

We thank Joe Halpern for helpful discussions, and the anonymous referee for very construc-
tive comments.

References

[Abr88] K. Abrahamson. On achieving consensus using shared memory. In Proc. 7th
ACM Symp. on Principles of Distributed Computing, pages 291–302, 1988.

[AG85] Y. Afek and A. Gafni. Time and message bounds for election in synchronous
and asynchronous complete networks. In Proc. 4th ACM Symp. on Principles
of Distributed Computing, pages 186–195, 1985.

[BGW89] G. M. Brown, M. G. Gouda, and C.-L. Wu. Token systems that self-stabilize.
IEEE Trans. on Computers, 38(6):845–852, June 1989.

[Blo87] B. Bloom. Constructing two-writer atomic registers. In Proc. 6th ACM Symp.
on Principles of Distributed Computing, pages 249–259, 1987.

[BP89] J. E. Burns and J. Pachl. Uniform self-stabilizing rings. ACM Trans. on Pro-
gramming Languages and Systems, 11(2):330–344, 1989.

[CG89] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, April 1989.

[CM86] M. Chandy and J. Misra. How processes learn. Journal of Distributed Comput-
ing, 1:40–52, 1986.

27

[CR79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-
finding in circular configuration of processes. Communications of the ACM,
22(5):281–283, 1979.

[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed
for distributed consensus. Journal of the ACM, 34(1):77–97, 1987.

[DGS88] D. Dolev, E. Gafni, and N. Shavit. Toward a non-atomic era: l-exclusion as
a test case. In Proc. 20th ACM Symp. on Theory of Computing, pages 78–92,
1988.

[Dij74] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commu-
nications of the ACM, 17:643–644, 1974.

[Dij86] E. W. Dijkstra. A belated proof of self-stabilization. Journal of Distributed
Computing, 1:5–6, 1986.

[DIM90] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems as-
suming only read write atomicity. In Proc. 9th ACM Symp. on Principles of
Distributed Computing, 1990.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirectional distributed
algorithm for extrema finding in a circle. Journal of Algorithms, 3:245–260,
1982.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, 1988.

[DM86] C. Dwork and Y. Moses. Knowledge and common knowledge in a Byzantine envi-
ronment i: Crash failures. In Theoretical Aspects of Reasoning about Knowledge:
Proceedings of the 1986 Conference, pages 149–169. Morgan Kaufmann, 1986.

[FHV84] R. Fagin, Y. J. Halpern, and M. Vardi. A model theoretic analysis of knowledge.
In Proc. 25th IEEE Symp. on Foundations of Computer Science, pages 268–278,
1984.

[FI86] M. J. Fischer and N. Immerman. Foundations of knowledge for distributed
systems. In Theoretical Aspects of Reasoning about Knowledge: Proceedings of
the 1986 Conference, pages 171–185. Morgan Kaufmann, March 1986.

[FI87] M. J. Fischer and N. Immerman. Interpreting logics of knowledge in proposi-
tional dynamic logic with converse. Information Processing Letters, 25(3):175–
181, May 1987.

[Fis83] M. J. Fischer. The consensus problem in unreliable distributed systems (a brief
survey). In M. Karpinsky, editor, Foundations of Computation Theory, pages
127–140. Lecture Notes in Computer Science, vol. 158, Springer-Verlag, 1983.

[FL87] G. Fredrickson and N. Lynch. Electing a leader in a synchronous ring. Journal
of the ACM, 34:98–115, 1987.

28

[FLBB89] M. J. Fischer, N. A. Lynch, J. E. Burns, and A. Borodin. Distributed FIFO
allocation of identical resources using small shared space. ACM Trans. on Pro-
gramming Languages and Systems, 11(1):90–114, 1989.

[FLM86] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for
distributed consensus problems. Journal of Distributed Computing, 1:26–39,
1986.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, April
1985.

[FZ88] M. J. Fischer and L. D. Zuck. Reasoning about uncertainty in fault-tolerant
distributed systems. In M. Joseph, editor, Formal Techniques in Real-Time and
Fault-Tolerant Systems, pages 142–158. Lecture Notes in Computer Science, vol.
331, Springer-Verlag, 1988.

[GGK+84] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph, and
M. Snir. The NYU ultracomputer—designing an MIMD parallel computer.
IEEE Trans. on Computers, pages 175–189, February 1984.

[Gou89] M. G. Gouda. The stabilizing philosopher: Asymmetry by memory and by
action. Science of Computer Programming, 1989.

[Had87] V. Hadzilacos. A knowledge theoretic analysis of atomic commitment protocols.
In Proc. 6th ACM Symp. on Principles of Database Systems, pages 129–134,
1987.

[Hal] Y. J. Halpern. personal communication.

[Hal86] Y. J. Halpern. Reasoning about knowledge: An overview. In Theoretical Aspects
of Reasoning about Knowledge: Proceedings of the 1986 Conference, pages 1–17.
Morgan Kaufmann, 1986.

[Hem89] D. Hemmendinger. Initializing memory shared by several processors. Interna-
tional Journal of Parallel Programming, 18:241–253, 1989.

[Her91] M. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages
and Systems, 11(1):124–149, January 1991.

[HF89] Y. J. Halpern and R. Fagin. Modelling knowledge and action in distributed
systems. Distributed Computing, 3:159–177, 1989.

[HM90] Y. J. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549–587, July 1990.

[HS80] D. S. Hirschberg and J.B. Sinclair. Decentralized extrema-finding in circular
configuration of processes. Communications of the ACM, 23:627–628, 1980.

[HZ87] Y. J. Halpern and L. D. Zuck. A little knowledge goes a long way: Simple
knowledge-based derivations and correctness proofs for a family of protocols. In
Proc. 6th ACM Symp. on Principles of Distributed Computing, pages 269–280,
August 1987.

29

[KK90] S. Katz and Perry K.J. Self-stabilizing extensions for message-passing systems.
In Proc. 9th ACM Symp. on Principles of Distributed Computing, 1990.

[KKM] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of
efficient leader finding algorithms. ACM Trans. on Programming Languages and
Systems, 2, 1990.

[KMZ84] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some
distributed algorithms for a complete network of processors. In Proc. 3rd ACM
Symp. on Principles of Distributed Computing, pages 199–207, 1984.

[Kru79] H. S. M. Kruijer. Self-stabilization (in spite of distributed control) in tree-
structured systems. Information Processing Letters, 2:91–95, 1979.

[KT86] S. Katz and G. Taubenfeld. What processes know: Definitions and proof meth-
ods. In Proc. 5th ACM Symp. on Principles of Distributed Computing, pages
249–262, August 1986.

[LA87] C. M. Loui and H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in Computing Research, 4:163–
183, 1987.

[Lam86] L. Lamport. The mutual exclusion problem: Statement and solutions. Journal
of the ACM, 33:327–348, 1986.

[Leh84] D. Lehmann. Knowledge, common knowledge and related puzzles. In Proc. 3rd
ACM Symp. on Principles of Distributed Computing, pages 62–67, 1984.

[LF83] N. A. Lynch and M. J. Fischer. A technique for decomposing algorithms
which use a single shared variable. Journal of Computer and System Sciences,
27(3):350–377, December 1983.

[LP90] R. L. Lipton and A. Park. The processor identity problem. Manuscript, March
1990.

[Maz89] M. S. Mazer. A knowledge-theoretic account of negotiated commitment. Tech-
nical Report CSRI–237, Computer Systems Research Institute, University of
Toronto, November 1989. PhD Thesis.

[Mic89] R. Michel. A categorical approach to distributed systems expressibility and
knowledge. In Proc. 8th ACM Symp. on Principles of Distributed Computing,
pages 129–143, August 1989.

[Mis91] J. Misra. Phase synchronization. Information Processing Letters, 38:101–105,
1991.

[MT88] Y. Moses and M. R. Tuttle. Programming simultaneous actions using common
knowledge. Algorithmica, 3:121–169, 1988.

[MT91] M. Merritt and G. Taubenfeld. Knowledge in shared memory systems. In Proc.
10th ACM Symp. on Principles of Distributed Computing, August 1991.

30

[Pea85] G. H. Pfister and et. al. The IBM research parallel processor prototype (RP3):
Introduction and architecture. In Proceedings International Conference on Par-
allel Processing, 1985.

[Pet82] G. L. Peterson. An O(n log n) unidirectional algorithm for the circular extrema
problem. ACM Trans. on Programming Languages and Systems, 4(4):758–762,
1982.

[PKR84] J. Pachl, E. Korach, and D. Rotem. Lower bounds for distributed maximum-
finding algorithms. Journal of the ACM, 31:905–918, 1984.

[PR85] R. Parikh and R. Ramanujam. Distributed processes and the logic of knowledge.
In R. Parikh, editor, Proceedings of the Workshop on Logic of Programs, pages
256–268, 1985.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–234, 1980.

[RBJ88] A. G. Ranade, S. N. Bhatt, and S. L. Johnsson. The fluent abstract machine.
Technical Report YALEU/DCS/TR–573, Department of Computer Science,
Yale University, January 1988.

[Tau89a] G. Taubenfeld. Leader election in the presence of n − 1 initial failures. Infor-
mation Processing Letters, 33:25–28, 1989.

[Tau89b] G. Taubenfeld. Self-stabilizing Petri nets. Technical Report YALEU/DCS/TR–
707, Department of Computer Science, Yale University, May 1989.

[Tau91] G. Taubenfeld. On the nonexistence of resilient consensus protocols. Information
Processing Letters, 37:285–289, 1991.

[TKM89a] G. Taubenfeld, S. Katz, and S. Moran. Impossibility results in the presence
of multiple faulty processes. In 9th FCT-TCS Conference, Bangalore, India,
December 1989. Lecture Notes in Computer Science, vol. 405 (eds.:C.E. Veni
Madhavan), Springer Verlag 1989, pages 109-120.

[TKM89b] G. Taubenfeld, S. Katz, and S. Moran. Initial failures in distributed computa-
tions. International Journal of Parallel Programming, 18:255–276, 1989.

[TM89] G. Taubenfeld and S. Moran. Possibility and impossibility results in a shared
memory environment. In 3rd International Workshop on Distributed Algorithms,
1989. Lecture Notes in Computer Science, vol. 392 (eds.: J.C. Bermond and M.
Raynal), Springer-Verlag 1989, pages 254–267.

[Tut90] M. Tuttle. Knowledge and distributed computation. Technical Report
MIT/LCS/TR–477, Department of Computer Science, MIT, May 1990. PhD
Thesis.

[VA86] P. M. B. Vitanyi and B. Awerbuch. Atomic shared register access by asyn-
chronous hardware. In Proc. 27th IEEE Symp. on Foundations of Computer
Science, pages 223–243, 1986. Errata, Ibid., 1987.

31

